Energy

Photovoltaics: technology and market development – the role of Germany

Ruggero Schleicher-Tappeser, consultant, Berlin AHK, Prague, May 26, 2009

ruggero@schleicher-tappeser.eu

Outline

I am a free-lance consultant working closely with the German Solar Industry Association BSW-solar. Therefore I partly use BSW-solar documentation.

- Germany growth dynamics of the world's largest PV market
- 2. PV Market challenges ahead
- 3. Innovation & emerging technologies
- 4. Fostering an international learning process

Please respect the indicated copyrights in this presentation.

Quoting is allowed provided you indicate the source.

German Solar Industry Association

Bundesverband Solarwirtschaft – BSW-Solar

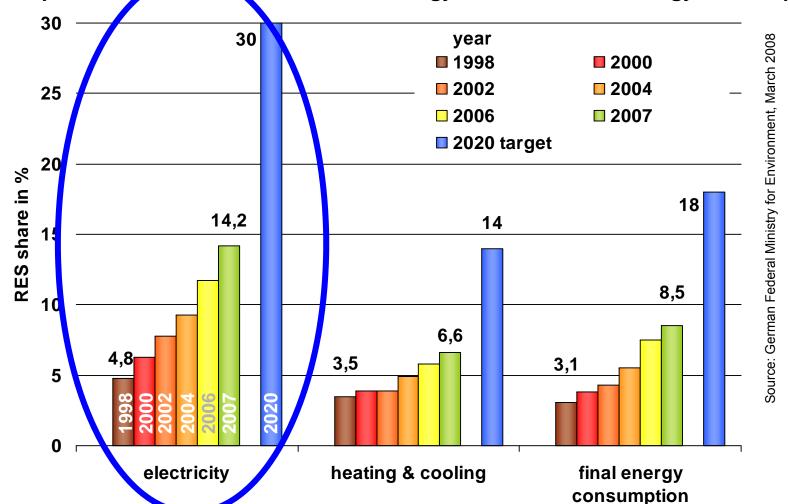
TASK Represent the German solar industry in the solar thermal energy and photovoltaics sectors

VISION A worldwide sustainable energy supply provided by solar energy

ACTIVITIES Lobbying, political advice, public relations, market observation, standardization

TIME Over 25 years of activity in the solar energy sector

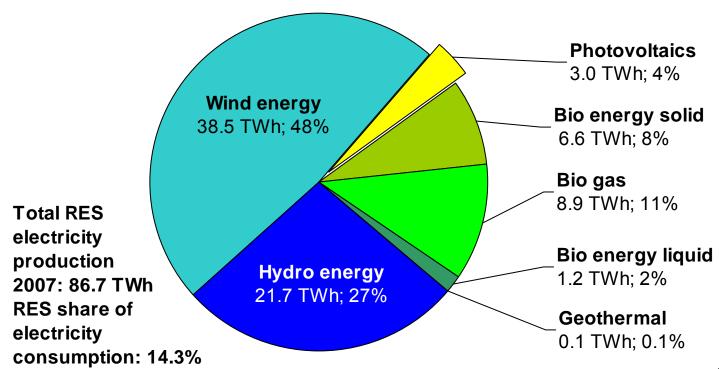
MEMBERS More than 600 solar producers, suppliers, wholesalers, installers and other companies active in the solar business


HEADQUARTERS Berlin

GERMANY – GROWTH DYNAMICS OF THE WORLD'S LARGEST PV MARKET

Basis of the German Success in Renewable Energy Sources: A Clear and Continous Policy to Increase the Share of RES

Development of the share of Renewable Energy Sources in final energy consumption

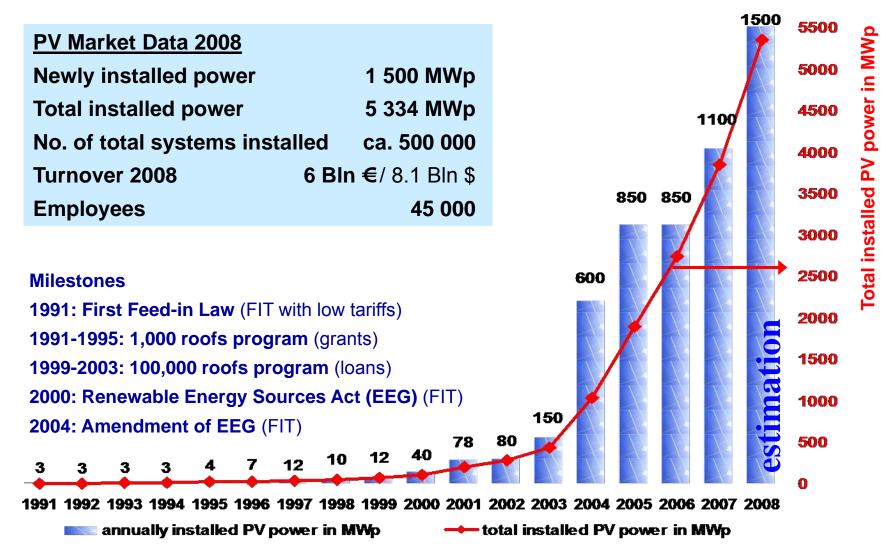

Share of Solar Electricity in Germany

Share of PV electricity

- of electricity consumption 2007: 0.6% (2006: 0.44%)

- of renewable energy electricity 2007: 3.5% (2006: 3.1%)

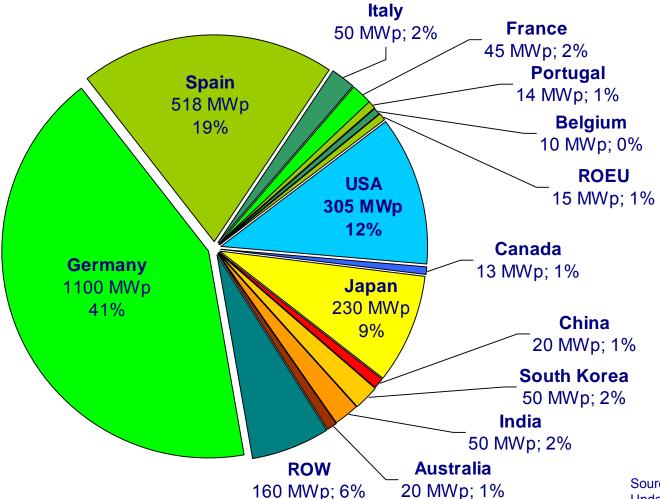
Distribution of Renewable Energy Electricity Production in Germany 2007


Source: BEE, Jan 2008

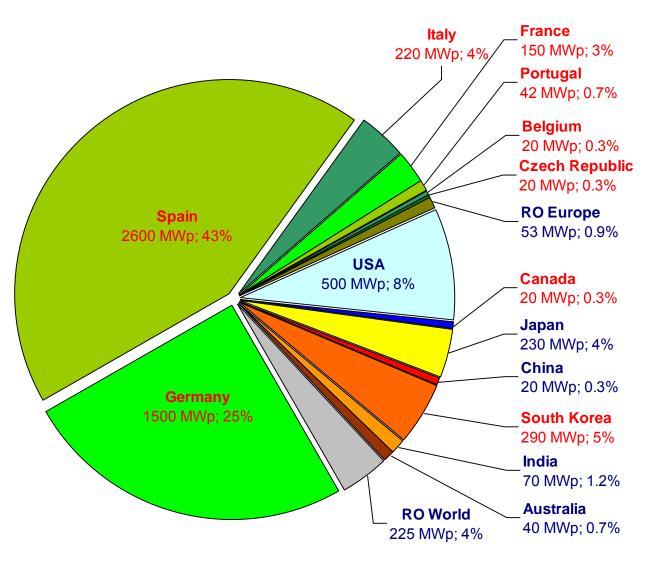
Why promote photovoltaics?

A method for the production of electricity with exceptional advantages:

- Applicable <u>anywhere</u> in the world
- Applicable <u>at all scales</u>, grid-connected and off-grid
- No problems for the <u>environment</u>
- Costs coming down rapidly, starts become competitive with traditional electricity production
- A practically <u>unlimited</u> potential


Development of the German PV market

Photovoltaic World Market 2007


Newly installed PV Power : 2.6 GWp

Source: BSW-Solar, EPIA, NNPVA Updated 5 September 2008

Photovoltaic World Market 2008

New installed PV Power

2006: 1600 MWp

2007: 2650 MWp

(+66%)

2008: 6000 MWp

(+126%)

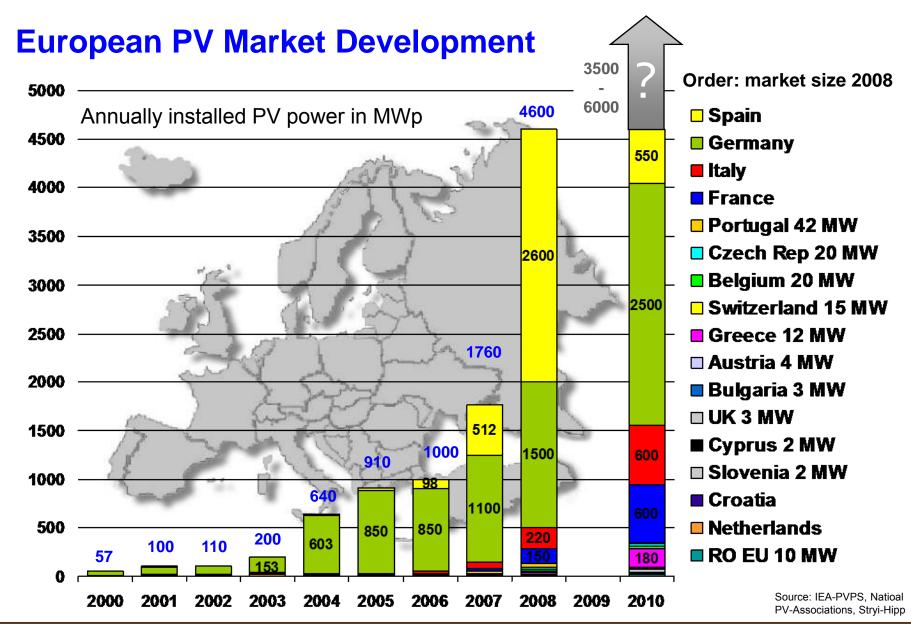
Red Letters: Countries with Feed-in tariff schemes

Source: Preliminary figures of National PV Associations, Stryi-Hipp, Feb 26th 2009

Developments in important European PV Markets

-		
	Germany	Amendment of the EEG in June 2008 provides continuity for the 2009 – 2012 period, changes can be made earlier by the parliament if unexpected developments happen
	Spain	PV market exploded in 2008 to 2.6 GWp or more, the Royal Decree from September 2008 reduces the PV market to 500 MWp in 2009 and forsees a market growth of 10% annually
	Italy	Stable feed-in tariff conditions, goal of 3 GWp PV installations, good market development expected, but administrative barriers on regional level slow the market growth
	France	Stable support scheme, good market development expected, favorable conditions only for building integrated PV, general improvements of the support scheme
	Greece	Feed-in tariff is very attractive but administrative barriers prevented the market development up to now, it is expected that the new PV law from December 2008 will push the market

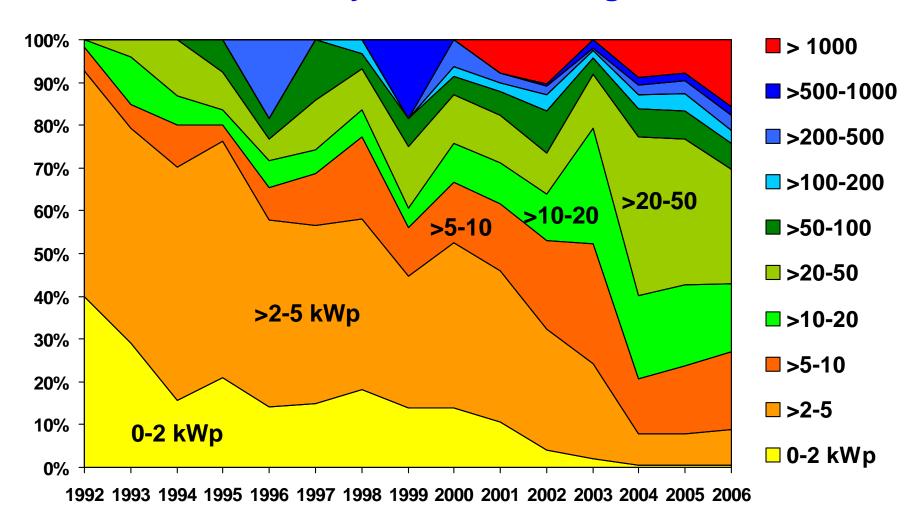
Other promising European PV markets: Belgium, Czech Republic, Portugal, Slovenia, UK,...



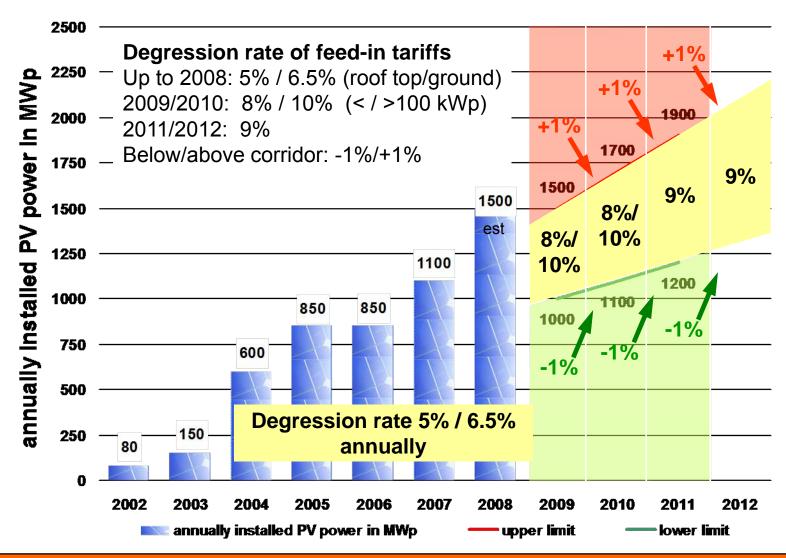
Feed-in tariffs of important European PV Markets

	Feed-in tariffs [€ct/kWh]			Market size [MWp]		
Year	2008	2009	Growth	2008	2010	Growth
Germany	37.96 54.21	31.94 43.01	-8% -10%	1500	2500	x1.7
Spain	23 44	32 34	-25%	2600	550	x0.2
Italy	36 49	35.28 48.02	-2%	150	600	x4
France*	31.19 57.16	32.82 60.17	+5%	150	600	X4
Greece**	40 50	40 50	0%	10	200	x20

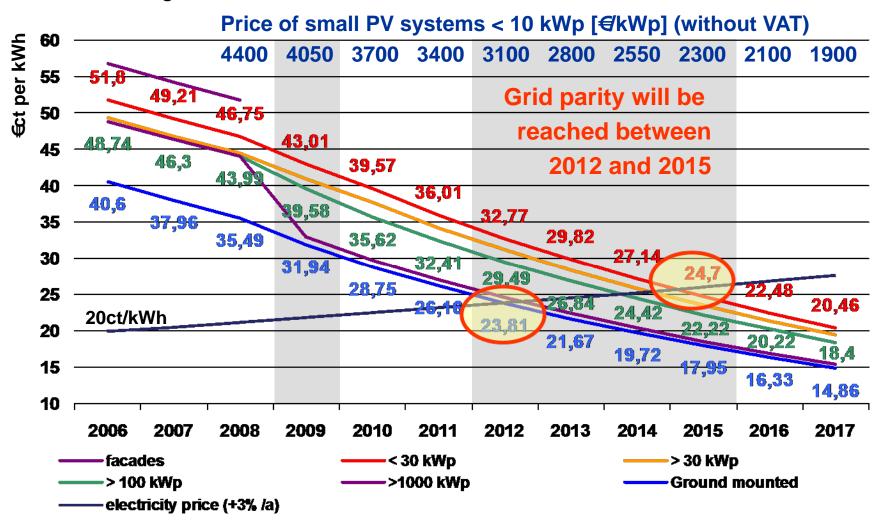
^{*} plus tax reduction ** plus subsidies Source: National PV associations



Germany: Market Segments of on-grid PV Systems


Market share of PV systems according to size

Source: BSW-Solar, calculated from data of 2.2 GWp PV systems from EnBW, EON, RWE, Vattenfall


Amendment of the EEG from June 2008: Feed-in Tariffs for PV will be reduced faster as of 2009

Feed-in Tariffs for PV within the German EEG

Based on degression rates decided on June 6th, 2008

Photovoltaic market entrance strategy

1. Create PV demand by:

- Granting the right of solar electricity production and grid connection
- Making solar electricity production financially attractive

2. Building up:

- PV market
- PV production
- Installation capacitie
 Reduction of costs
 Less energy imports
 Creation of jobs

3. PV will become:

- Cost-competitive
- An important pillar of the sustainable energy system

First results

- More than €15 billion have been invested in PV systems since 2000
- Drop in costs for PV systems of
 - approx. 25% from 1999 to 2003
 - approx. 5% annually since mid 2006

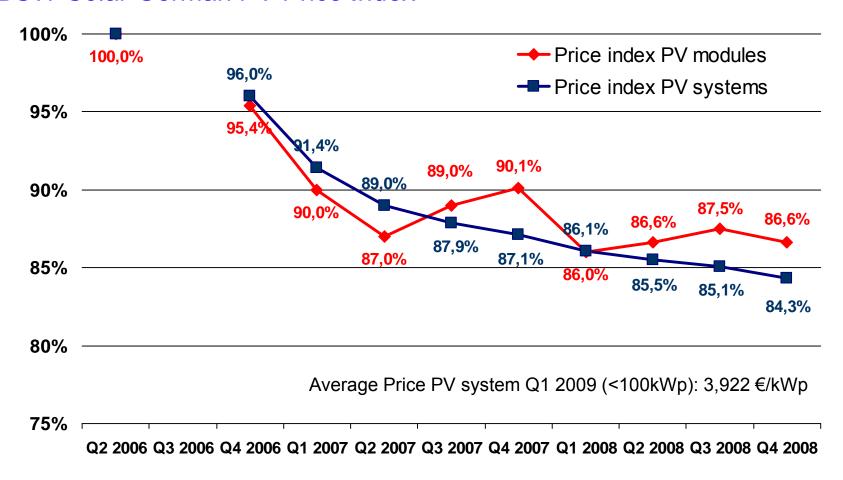
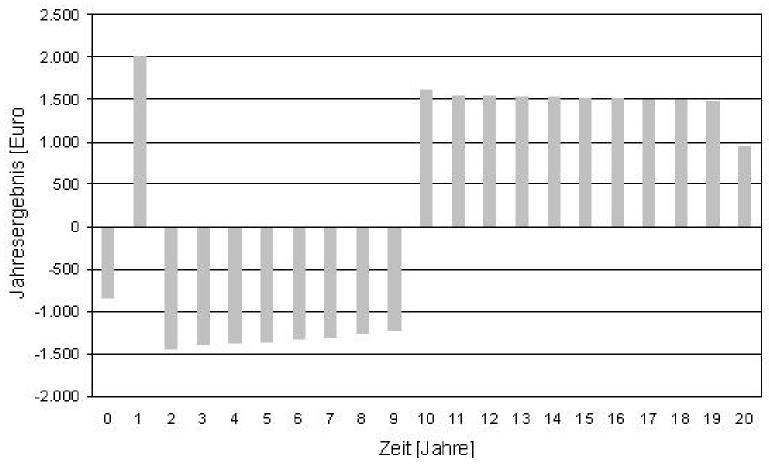


Image: Aleo

Price of PV Modules and Systems is Declining:

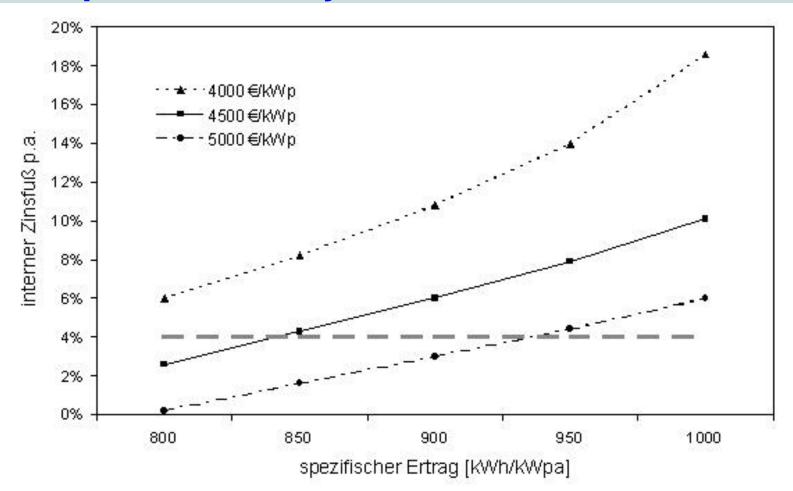
BSW-Solar German PV Price Index

PV Moduls = Wholesale price for installer, PV systems = final customer price, ready installed


Source: Representative independent poll of 100 installers by EUPD-Research on behalf of BSW-Solar

Profitability of PV plants: influencing factors

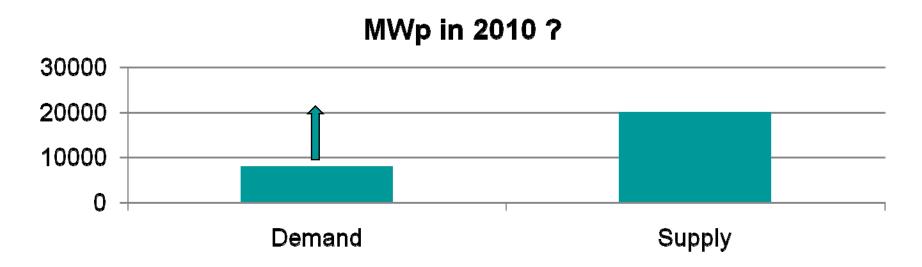
- Costs of the system (modules [ca. 50%], rest of the system, installation)
- Running costs (ca. 1% p.a.: maintenance, insurance; taxes)
- Electricity yield of the system (location, orientation, quality of the installation)
- Duration of the installation, of the warranty (20-25a)
- Feed-in-tariff: amount / duration
- Financial support for investment (taxes, other subsidies)
- Bank credit: amount / structure / interests


Typical financial results over time

Small plant (5kWp, 22.500 EUR, 900kW/kWpa)

Germany: return on investment

- dependence on yield and costs



Internal interest rate / Yield / Costs for a standard small system

PV: CHALLENGES AHEAD

Independent from the economic crisis: worldwide PV overcapacity

- Announcements for production in 2010 amount to 20 GWp
- Demand estimates range between 4 and 14 GWp
- → Big efforts in market development are necessary
- → Only strong and high quality producers will survive

EU sets ambitious targets for 2020

 In December 2008 the EU decided compulsory targets for 2020

Decrease of CO2 emissions: -20%

Reduction of energy consumption: -20%

- Share of renewables in final energy consumption 20%
- National targets agreed, national action plans required, regular reporting
- Detailed policies for electricity, heat
- →Electricity needs 35-40% renewables by 2020

German Renewable Energy Association: Prognosis exceeds EU targets

Share of total electricity production in Germany

	share 2020	growth 2007-2020
 Biomass 	9%	+119%
 Geothermie 	1%	
• PV	7%	+1217%
• Hydro	5%	+54%
 Wind onshore 	19%	+182%
 Wind offshore 	6%	
• TOTAL	47%	

EPIA is more ambitious: Towards PV competitivity in Europe

European Photovoltaic Industry Association EPIA:

- Realistic learning curve:
 100% increase of installed PV → 20% cost reduction
- → Step by step grid parity will be reached in all important markets in the coming years

	2008	2012	2016	2020
Share of EU electricity markets where grid parity is reached	0%	10%	50%	90%

EPIA proposes as target for EU policies:

•	Cumulative PV installed in Europe 2020 :	350 GWp
---	--	---------

PV share of EU electricity generation : 12%

Annual growth rate of installed PV base : 40%

The crisis: impact on business

- Medium term growth prospects for renewables better than ever
- Credit crunch brings problems to <u>project financing</u> utilities and private investors not touched
- Government aid programs support growth of renewables safe haven for investments
- Low <u>oil price</u>: temporary problems
- <u>PV</u> a special case:
 - overcapacity brings consolidation of the sector
 - emphasis on quality
 - sinking prices, increased <u>competitiveness</u>
 - new markets needed

INNOVATION AND EMERGING TECHNOLOGIES

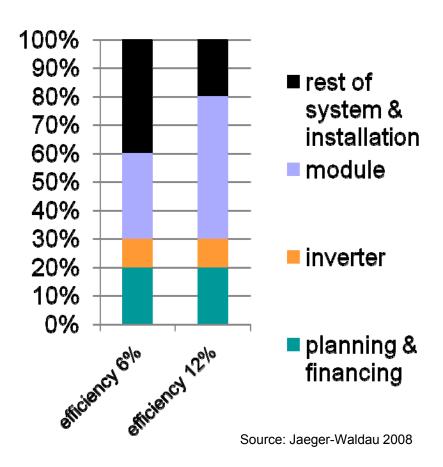
Boosting innovation in photovoltaics

The new PV markets opened since 2003 by the German feed-in-tariff, enlarged by Spain and later followers have boosted innovation activities in the PV sector:

- Increased and lower cost silicon production
- Lower costs and efficiency gains in c-Si cells
- Thin film technologies: aSi, µc-Si, micromorph Si, CIGS, CdTe ...
- Concentrating photovoltaic systems CPV
- New PV concepts
- Building integration of PV (BIPV)
- Tracking and support systems
- Grid integration concepts

→Innovation and cost reduction are accelerating

New developments in thin film PV


- More than 100 companies have announced time frames and capacities for TF PV production ¹
 - 40 Europe, 27 China, 12 Taiwan, 19 USA, 8 Japan
 - 82 Si, 19 CIGS, 7 CdTe, 5 Dye & others
- More than 12 companies offer "turn-key" production systems 1
- Estimates for 2010: nearly 5 GW ²
- Steady correlation since 30y: doubling volume → 22% cost reduction
- Thin film factories mushrooming, also in Germany
 - Q-cells (a-Si/µc-Si, CdTe/CdS, CIGS)
 - Ersol now a Bosch subsidiary aiming at rapid expansion (a-Si)
 - Masdar initiative (Si, Applied Materials)
 - A series of smaller companies
 - Equipment providers (Roth & Rau, Manz, Centrotherm, etc.)

¹ Jaeger-Waldau 2008 ² LBBW 2008

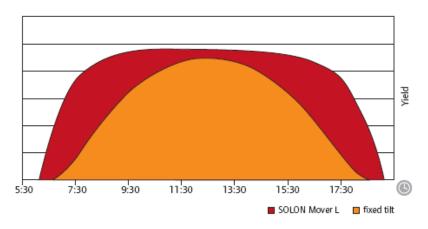
The importance of system costs

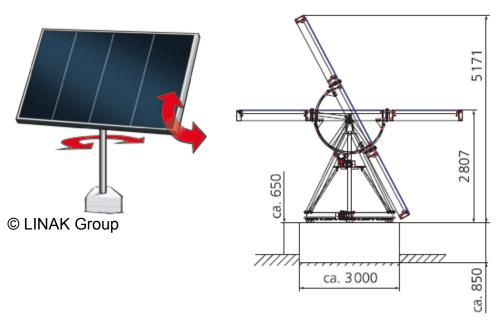
- Lower efficiency requires larger surfaces
- At low efficiency module costs may make up for only 1/3 of system costs
- → Efficiency matters
- Costs of the rest of the system matter
- → Interesting prospects for innovative BIPV with low cost cells

Cost components at overall system costs of 2 €/ Wp

Concentrating Photovoltaic Systems CPV

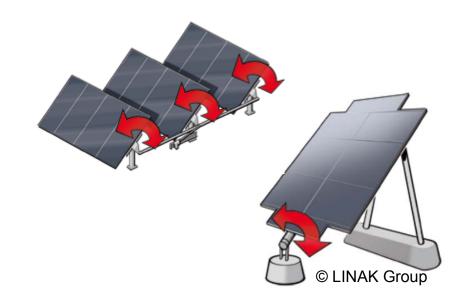
- Low-concentration (factor < 10) and high-concentration (factor >100) systems
- Low concentration modules (10x) with conventional Si-cells: high yield with low system costs Germany: Archimedes (ZEW Stuttgart spin-off)
- New high-yield cells open new prospects
 - World record 40,8% efficiency with triple-junction cells


© Archimedes


- Integrated concentrator modules (500x) promise low costs for sunny regions
 - 5,6 MW plant near Sevilla with Concentrix fresnel-lens modules shows 23% efficiency (Concentrix is an ISE spin-off with Albengoa capital)
 - new Concentrix modules: efficiency over 27%, energy payback time <1 year
 - automated 25 MW production line opened Sept 2008 in Freiburg

Two axis tracker systems

- Higher yield
- Higher costs
- More surface required (5ha/MWp)



Single axis tracker systems

- Lower additional costs (system, installation, maintenance)
- Lower surface requirements (2,5 ha/MWp)

Building Integrated PV (BIPV)

- Whole roofs as a first step
- Other components of the building shell require more sophisticated solutions / integration with
 - standard building components
 - planning and building processes
 - construction industry
- Very high potential but little commercial progress in the last years
- Research in Germany: Fraunhofer ISE etc.
- Innovative Systems and Components:
 - Schott
 - Schüco
 - Systaic
- New opportunities with thin film products

Building Integrated PV (BIPV) 2

- Wide range of possible applications
- Increasing aesthetical options
- Low or no additional costs for support structures
- System solutions required

© Schott

Building Integrated PV (BIPV) 3

© Saint Gobain

© www.solarnova.de

Grid integration

- Reduced scepticism concerning grid management: Inverter industry: no problem with up to 50% solar electricity in German grid
- Inverters have to take over tasks in grid stabilisation
- "Kombi-Kraftwerk": virtual hybrid power station combining wind, solar, biogas & hydro has shown high performance in matching demand
- slow but systematic progress in net metering: adapting demand to the offer

Mini-grids & hybrid systems

Mini-grids:

- improved inverters & controls → bottom-up construction of grids increasingly attractive: scalable mini-grids with usual 230V appliances
- hybrid systems combining PV, wind and biofuels increasingly standardised
- Improving storage technologies
- PV markets off centralised grids with huge potential
 - high diesel costs call for new approaches
 - declining costs of PV-focused mini-grids offer new solutions
 - rural population needs electricity
- Important contributions from research institutes and industry (ISET Kassel, Fraunhofer ISE, SMA, Kaco, Steca, Fronius, Energiebau ..)

A COLLECTIVE INTERNATIONAL LEARNING PROCESS

Fascinating challenges asking for joint efforts

- PV will be able to deliver large parts of worldwide electricity at competitive costs
- New opportunities for areas with no or weak grids
- Huge growth opportunities for the PV industry

<u>Challenges</u>

- → Bridging of the cost gap until grid parity, ensuring continuous market growth (► politics)
- → Reducing administrative barriers for PV (► administration, politics)
- → Bringing down the costs through continuous innovation (► industry, research)
- → Ensuring high quality with qualified personnel (► industry, training institutions)
- → Creating new markets with new applications, BIPV (► industry)
- → Supporting the growth of PV markets worldwide (► industry, politics)

43

Rapid learning requires co-operation

- Co-operation along the value creation chain
- Co-operation between research and industry
- Co-operation between national industry associations
- Co-operation between governments in order to ensure a balanced market growth

International cooperation needed A new important player: IRENA

We are in a rapid global learning process, facilitators are needed, an important one could be:

- The International Renewable Energy Agency (IRENA): a dedicated International Organisation for renewables
- Founded in Bonn on January 26, 2009
- 78 countries signed
- Headquarters and DG to be decided in June
- An important signal, far beyond the organisation itself:
 Renewables are being taken serious

Thank you

www.bsw-solar.de

www.irena.org

www.schleicher-tappeser.eu